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We report the first results of an experiment, in which explicit information on all
velocity derivatives (the nine spatial derivatives, ∂ui/∂xj , and the three temporal
derivatives, ∂ui/∂t) along with the three components of velocity fluctuations at a
Reynolds number as high as Reλ ∼ 104 is obtained. No use of the Taylor hypothesis
was made, and this allowed us to obtain a variety of results concerning acceleration
and its different Eulerian components along with vorticity, strain and other small-
scale quantities. The field experiments were performed at five heights between 0.8 and
10 m above the ground.

The report consists of three parts. Part 1 is devoted to the description of facilities,
methods and some general results. Part 2 concerns accelerations and related matters.
Part 3 is devoted to the issues concerning temperature with the emphasis on joint
statistics of temperature and velocity derivatives.

1. Introductory notes
As the material derivative of the velocity vector, the fluid particle acceleration

field in turbulent flow is among the natural physical parameters of special interest
in turbulence research for a variety of reasons. Problems in which fluid particle
acceleration plays a key role range from studies of basic issues such as fine-
scale intermittency, production of Reynolds stresses, the so-called random Taylor
hypothesis and two-phase turbulent flows to applications in turbulent mixing and
transport, cloud physics and influence of turbulence on the behaviour of insects.
In particular, Lagrangian acceleration statistics are at the core of the kinematic
theory and modelling of turbulent dispersion, mixing, particulate transport and
combustion. Finally, the acceleration gradient tensor is known to govern the topology
of quasi-geostrophic stirring (particle dispersion and tracer gradient evolution) and
transport properties in nearly two-dimensional and geostrophic turbulence (Yeung
& Pope 1989; Borgas & Sawford 1991; Bernard, Thomas & Handler 1993; Hua &
Klein 1998; La Porta et al. 2001; Tsinober, Vedula & Yeung 2001; Pope 2002; Shaw
2003).

Hence, it is not surprising that there is a huge interest in a variety of issues
associated with fluid particle accelerations in turbulent flows (Hill & Wilczak 1995;
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Figure 1. Autocorrelation functions of the acceleration, a, and its components. (a) From
Yeung (1997) with time scaled by the Lagrangian velocity integral time scale at
Reλ =140. (b) From Mordant et al. (2004b) with time scaled by the Kolmogorov time
τη =

√
ν/ε, the line without symbols is for the acceleration magnitude, inset: semilogarithmic

plot.

Hill & Thoroddsen 1997; Yeung 1997; Voth et al. 1998, 2002; Mann, Ott & Andersen
1999; Vedula & Yeung 1999; Ott & Mann 2000; Pinsky, Khain & Tsinober 2000;
Christensen & Adrian 2001, 2002a , b; Kholmyansky, Tsinober & Yorish 2001b;
La Porta et al. 2001; Lüthi et al. 2001; Shaw & Oncley 2001; Tsinober et al.
2001; Hill 2002; Mordant et al. 2003, 2004a–c; Sawford et al. 2003; Aringazin
& Mazhitov 2004; Biferale et al. 2004; Gylfason, Ayyalasomayajula & Warhaft
2004; Lee, Yeo & Choi 2004; Yeung & Borgas 2004; Crawford, Mordant &
Bodenschatz 2005; Reynolds et al. 2005; Chen, Goto & Vassilicos 2006 and references
therein).

The study of the basic properties of Lagrangian accelerations was started using
direct numerical simulations by Yeung & Pope (1989) and continued by Yeung (1997);
Vedula & Yeung (1999) and Tsinober et al. (2001). Because of extreme difficulties,
the direct measurement of the acceleration of a fluid particle has only recently been
achieved in laboratory flows by three-dimensional particle tracking (3DPT) (see Mann
et al. 1999; Ott & Mann 2000; La Porta et al. 2001; Lüthi et al. 2001; Mordant et al.
2003, 2004b; Sawford et al. 2003; Crawford et al. 2005; Reynolds et al. 2005), with
especially high-precision experiments performed by E. Bodenschatz and colleagues.
These experiments were made in a water flow configuration known as the ‘French
washing machine’ in which the flow is produced by two counter-rotating disks (as in
the classical von Kármán flow) and is believed to be highly anisotropic. Among the
findings in the direct determination of particle acceleration (both via DNS and 3DPT)
is the persistence of the magnitude of accelerations along the fluid particle trajectory
as contrasted with the variability of its direction. The former has a correlation time
of the order of integral Lagrangian time, whereas the latter has a correlation time of
the Kolmogorov time only (see figure 1).

In the Eulerian setting, a successful attempt to measure accelerations was made
in a turbulent channel flow by particle-image accelerometry (Christensen & Adrian
2001, 2002a , b) which is an extension of the particle image velocimetry at moderate
Reynolds number using air as a working fluid.
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Until recently, it was believed to be impossible to use hot-wire anemometry to
measure acceleration:

Even in multipoint probe measurements of velocity gradients (e.g. Vukoslavcevic,
Wallace, and Balint (1991); Tsinober, Kit, and Dracos (1992)), Taylor’s hypothesis
is invoked to estimate derivatives along the mean streamwise direction. (Dahm &
Southerland 1997).

In order to determine a from Eulerian measurements, it would be necessary to know
∂u/∂t as well as u and ∇u at a point in space (which is possible in DNS but not in
experiments). (Voth et al. 2002)

The only results achievable so far relate to indirect evaluation of acceleration
variance, 〈a2〉, using the methods developed by Hill and Wilczak assuming local
isotropy (Hill & Wilczak 1995; Hill & Thoroddsen 1997) and used by Gylfason et al.
(2004). Figure 2 summaries various results on the acceleration variance normalized
by Kolmogorov scaling, a0 = 〈akak〉ε−3/2ν1/2/3. Also shown are additional results from
recent particle tracking data, recorded with the 3D-PTV system of Risø National
Laboratory (Ott & Mann 2000; Jørgensen et al. 2005; Mann et al. 2005) and processed
using the method of Lüthi, Tsinober & Kinzelbach (2005) and from some of our
recent field experiments described below. Though all the results are of the same order,
the scatter is not small.

However, it appears that it is possible to measure instantaneous accelerations in
an Eulerian setting using hot-wire anemometry. We made such a successful attempt
(Kholmyansky, Tsinober & Yorish 2001a; Galanti et al. 2003) through an extension
of the multi-hot-wire technique developed by Tsinober and colleagues (Tsinober et al.
1992, 1997; Kholmyansky & Tsinober 2000; Kholmyansky et al. 2000, 2001a, b;
Busen et al. 2001; Galanti et al. 2003, 2004). The new version of this technique
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Figure 3. (a) Tip of the NTH-probe; (b) PDF of the cosine between the local, al ,
and convective, ac , acceleration components. Inset: joint PDF of the true longitudinal
derivative, ∂u1/∂x1, and its estimate using the Taylor hypothesis, (−1/U )∂u1/∂t . Correlation
coefficient= 0.930.

allowed us to estimate the spatial derivatives of all three velocity components in the
streamwise direction independently of the time derivative, i.e. without invoking the
Taylor hypothesis.

This was achieved by constructing a five-array probe (see figure 3a) with the central
array shifted out in the streamwise direction: the so-called NTH-probe (‘non-Taylor
hypothesis’). Figure 3(b) shows one of the earlier results obtained with such a probe
in an atmospheric surface layer (Kholmyansky et al. 2001b). It is related to the
random Taylor hypothesis (Tennekes 1975) and demonstrates strong anti-alignment
between the Eulerian components, al = ∂u/∂t (local) and ac = uk(∂u/∂xk) = (u · ∇)u
(convective), of the fluid particle acceleration, a = al + ac. This effect was also observed
in DNS at relatively low Reynolds numbers (Tsinober et al. 2001). The strong anti-
alignment of al and ac is a manifestation of their strong mutual cancellation, so that a
appears to be much smaller than both al and ac , which represents the main difficulty
in reliable determination, e.g. of the variance of a. Thus, we have already shown
(Kholmyansky et al. 2001b; Galanti et al. 2003) that it is possible to use hot-wire
techniques for studying the field of fluid particle acceleration in an Eulerian setting.
(The reason that the slope in figure 3(b) is not along the bisector is a combination
of errors in the estimation of dx1 (geometry and effective ‘centre of mass’) and mean
velocity (calibration errors; it is well known that the mean velocity is difficult to
obtain from the hot-wire measurements). At the present level of precision we relate
the thickness of the ellipse to the calibration errors and do not draw conclusions
about the Taylor hypothesis.)

The main reason why we are using an ‘old-fashioned technique’ such as hot-wire
anemometry is that it gives us the possibility of measuring all three components of
the velocity fluctuations vector, ui , and all nine components of the spatial velocity
gradients tensor, ∂ui/∂xj , and its time derivatives, ∂ui/∂t . So far, all ‘modern’
techniques such as particle image velocimetry (PIV), particle tracking velocimetry
(PTV), holography and others are unable to cope with this problem either in resolution
or in the essence, i.e. obtaining the full set (total 15) of velocity derivatives both in
space and time at Reynolds numbers ∼ 104.
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1.1. Main goals and tasks

The preliminary results mentioned above comprise the basis for setting the main
theme and objectives of the present work.

For convenience we, first, recall here some of the notations.
The acceleration is a = al +ac , where ac = (u · ∇)u is the convective acceleration and

al = ∂u/∂t is the local acceleration in the frame attached to the ground, aL =ω × u is
the Lamb vector, aB = ∇u2/2 is the Bernoulli component of acceleration, a� =(a · û)û
is the acceleration component parallel to the velocity vector, where û = u/u is the
unit vector along the velocity vector, and a⊥ = a − a� is the acceleration component
normal to the velocity vector.

In addition, we consider a′
c = {(u − U) · ∇}u and a′

l = ∂u/∂t + (U · ∇)u which are
the convective and local components of acceleration in a frame moving with mean
velocity, U , and are different from al and ac , i.e. although the particle acceleration
is a Galilean invariant quantity, its Eulerian components are not. In a frame moving
with constant (mean) velocity, U , the velocity time derivative (i.e. local acceleration,
al , in a moving frame which we denote as a′

l ) is

lim
τ→0

u(x + Uτ, t + τ ) − u (x, t)

τ
=

∂u
∂t

+ (U · ∇)u.

The space derivative, e.g. ∂/∂x1, is

lim
ξ→0

u(x + ξ i) − u(x)

ξ
=

∂u
∂x1

,

but the instantaneous velocity is u − U . Therefore, the convective derivative (i.e.
the convective acceleration, ac , which we denote as a′

c) becomes {(u − U) · ∇}u. In
other words, the Eulerian components of acceleration are frame dependent, but the
total Lagrangian acceleration – as a true physical quantity – is, of course, frame
independent.

However, our measurements are in a particular Eulerian frame, i.e. attached to the
ground. The consequence is that the Lagrangian acceleration, a, is a sum of two large
quantities, al and ac , due to the contribution of the mean velocity, U . Since there is
a strong cancellation between al and ac (and consequently a is much smaller than
both al and ac) there is a strong ‘amplification’ of error when evaluating a. The
same observation is true when looking at a′

l and a′
c (which are much smaller than al

and ac owing to removal of the contribution from the mean velocity, U); both are
much more contaminated by noise (in the sense of relative error) than al and ac . The
problem of the errors that become especially apparent when we deal with a small
quantity, obtained as a difference of large ones, was discussed in Part 1 (Gulitski et al.
2007a). It is not easy (if even possible) to estimate their impact directly. When results
from DNS or other experiments exist, comparison with them can give an indication
of that impact.

The main goal is to study the field of Lagrangian accelerations, a ≡ Du/Dt , and
its Eulerian components: the local acceleration, al = ∂u/∂t , and the convective one,
ac = (u · ∇)u, as was done for low Reynolds numbers in DNS (Tsinober et al. 2001).
This includes the random Taylor (sweeping decorrelation) hypothesis and associated
issues of geometrical statistics of accelerations, involving the above mentioned variety
of Eulerian components of the total acceleration. In particular, we are interested
in mutual (statistical) cancellation between the local acceleration, al = ∂u/∂t , and
the convective one, ac = (u · ∇)u. Since these quantities are vectors, the degree of
this mutual cancellation should be studied both in terms of their magnitude and
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the geometry of vector alignments. Among other things, this cancellation should be
reflected in that the total acceleration, a = al + ac , is much smaller than its local and
convective components, al and ac , in large negative correlation between al and ac ,
and in strong (anti-)alignment of al and ac .

A natural by-product will be the direct check of the Taylor hypothesis using
the new technique mentioned above. We would like to stress that only a technique
allowing us to measure simultaneously and independently the spatial and temporal
velocity derivatives enables us to address all these issues. It is essential to note that,
in principle, neither the random Taylor hypothesis nor the conventional one can be
strictly valid.

Other aspects include one- and two-point statistics, conditional statistics of
accelerations and its Eulerian components and Reynolds-number effects.

2. Acceleration variance
2.1. General notes

The acceleration variance, 〈akak〉, is a key quantity in a number of issues. Following
the above cited papers, we use the Kolmogorov normalized version of acceleration
variance, a0 = (1/3)〈akak〉ε−3/2ν1/2 (Yaglom 1949; Obukhov & Yaglom 1951; Monin &
Yaglom 1975). Its value and scaling with the Reynolds number are essential for
stochastic Lagrangian models and for Lagrangian probability density function models
of turbulent diffusion if these models are to incorporate finite-Reynolds-number
effects.

As mentioned, at the present state of the art, the acceleration variance, 〈akak〉, and
consequently a0 are not directly obtainable from Eulerian measurements owing to
extremely strong cancellation between al and ac . As found by Tsinober et al. (2001)
from DNS simulations, the magnitude of the correlation coefficient between al and
ac is increasing with Reλ and is already about −0.97 at Reλ = 240. Therefore, we
can expect that this correlation coefficient will be extremely close to minus unity at
larger Reλ . Consequently, al + ac will become much smaller than both al and ac . At
Reλ =240, the RMS of a is already less than 0.1 of both al and ac . Hence a, obtained
as a sum of al and ac at large Reλ , is ‘drowning’ in noise. It is noteworthy that
PTV experiments at low Reλ (Lüthi et al. 2005) exhibit the same problem. Namely,
the RMS of the fluid particle acceleration obtained as a sum of al and ac is twice as
large as that obtained directly.

Hill & Wilczak (1995) found a relation determining the acceleration variance via
the fourth-order structure functions of the velocity field

〈akak〉 = χ − 35
2
ν〈(∂u1/∂x1)

3〉, (2.1)

with

χ = 4

∫ ∞

0

r−3
[
S(4)

u1
(r) + S(4)

u2
(r) − 6S(4)

u1u2
(r)

]
dr, (2.2)

S(4)
u1

(r) = 〈(	u1)
4〉; S(4)

u2
(r) = 〈(	u2)

4〉; S(4)
u1u2

(r) = 〈(	u1)
2(	u2)

2〉;
	ui = ui(x + r) − ui(x).

This expression was obtained with the only assumption being of local isotropy, so
that 	u3 can be used in (2.2) instead of 	u2. Hill & Wilczak (1995) argued also that
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a sufficiently precise result can be obtained from

χ = 4Hχ

∫ ∞

0

r−3S(4)
u1

(r) dr, (2.3)

with Hχ = const for sufficiently large Reynolds numbers. Vedula & Yeung (1999)
determined Hχ from DNS and showed that it approaches a constant value of
approximately 0.65 for Reλ greater than about 200. Also note that assuming isotropy,
we obtain

− 35
2
ν〈(∂u1/∂x1)

3〉 = ν〈ωiωj sij 〉.
This method was implemented in previous attempts to determine acceleration

variance using hot-wire anemometry by Hill & Thoroddsen (1997) and Gylfason
et al. (2004).

Figure 2 shows a number of points obtained from our data by the above method.
The main feature is that there seems to be no saturation in the Re-dependence of
a0. There are two possibilities. First, this may be a genuine effect. In that case, the
scaling proposed by Yaglom (1949) is not ‘perfect’ and the acceleration variance is
larger than that proposed by Yaglom. Secondly, the trend seen in figure 2 is due to
the imperfections of the indirect method. The issue seems to be open and requires
further more precise measurements.

3. One-point statistics
3.1. PDFs

Figures 4, 5 and 6 show the PDFs related to accelerations. All the PDFs exhibit strong
deviation from Gaussian distributions. This deviation cannot be considered as a pure
manifestation of intermittency because acceleration is a nonlinear function of velocity
and its derivatives. Therefore, even for a purely Gaussian velocity field we cannot
expect the PDFs, associated with accelerations (as any nonlinear functions/functionals
of velocity field) to be Gaussian (Tsinober 2001). Indeed, it was shown byTsinober
et al. (2001), using the data from DNS, that this is really the case: the PDFs of
accelerations of a Gaussian velocity field are strongly non-Gaussian, but somewhat
less than those for a real velocity field, resulting from the Navier–Stokes equations.

The PDF of the centred acceleration modulus a − 〈a〉 (figure 6a) deserves special
mention. It is strongly positively skewed. This behaviour is closely related to the
two-point statistics of acceleration moduli.
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3.2. Geometrical statistics

By the term geometrical statistics, we denote alignments between a variety of vectors.

3.2.1. Random Taylor hypothesis

These issues take their origin from Taylor (1935) and are known as the Taylor
hypothesis. Here we demonstrate one of the basic alignments associated with the
random Taylor hypothesis (or the sweeping decorrelation hypothesis) which concerns
the relations between the instantaneous Lagrangian acceleration and its (Eulerian)
‘components’ al = ∂u/∂t and ac = (u · ∇)u. It was suggested by Tennekes (1975) that

in turbulence with high Reynolds numbers... the dissipative eddies flow past an Eulerian
observer in a time much shorter than the time scale which characterizes their own
dynamics. This suggests that Taylor’s ‘frozen-turbulence’ approximation should be
valid for the analysis of the consequences of large-scale advection of the turbulent
microstructure.

The outcome is that (i) there should be a strong cancellation effect between al

and ac , so that a = al + ac is much smaller than both al and ac (e.g. comparing
their variances), and (ii) al and ac should be strongly anti-aligned. Both effects were
convincingly demonstrated by Tsinober et al. (2001) with DNS data for relatively
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small Reλ � 400 and with preliminary experiments (Kholmyansky et al. 2001b). We
observed these effects at Reλ ∼ 104.

The results are shown in table 1 with variances of a, al , ac , a′
l , a′

c and in figure 7
with an example of the PDFs of cos(al , ac), cos(a′

l , a′
c). Both clearly exhibit the two

aspects mentioned above. The anti-alignment is observed also for the acceleration
components associated with the frame moving with the mean velocity, i.e. cos(a′

l , a′
c),

though in a much weaker form, most probably due to the large relative error in these
quantities.

Another view on the above is shown in figure 8 with the joint PDFs of Cartesian
components of local and convective accelerations (only those for the x1-component
as the x2- and x3-components exhibit similar behaviour) for both acceleration
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components in the frame attached to the ground and the frame moving with
the mean velocity. The correlation between acceleration components in the frame,
attached to the ground, is pretty high, whereas the correlation in the frame, moving
with the mean velocity, is rather weak because of a large relative error for these
quantities.

Our main focus here is on the original random Taylor hypothesis concerning
the local and convective accelerations. However, it appears that the random
Taylor hypothesis is valid not only for the velocity field, but for a variety of
other quantities such as velocity derivatives (vorticity and strain), temperature
and its gradient, and solenoidal passive vectors. In other words, the random
Taylor hypothesis has a universal nature, which is manifested in a strong tendency
for cancellation between the local temporal derivative, ∂Q/∂t , and the advective
derivative, uk∂Q/∂xk , of whatever quantity, Q. Thus the full material (Lagrangian)
derivative, DQ/Dt = ∂Q/∂t + uk∂Q/∂xk , is much smaller (at least an order of
magnitude) than its Eulerian components. Evidence regarding this issue is given
by Galanti et al. (2003).

3.2.2. Alignments with the eigenframe, λk , of the rate of strain tensor, sij .

The alignments are shown in figures 9–12. The first important feature of all the
alignments with the eigenframe, λk , of the rate of strain tensor, sij , is that they are
all similar for the quantities, associated with the frame attached to the ground, and
for those in the frame moving with the mean velocity; in several cases they are very
similar. This is a clear indication that the quantities, associated with the frame moving
with the mean velocity, are captured correctly in spite of a much larger error in their
estimates as explained above.

As well as the important technical aspects described, we provide comments on the
nature of the alignments shown as follows.

One of the common features is that all the vectors tend to be normal to the
intermediate eigenvector, λ2, of the rate of strain tensor and tend to be aligned with
both the pure stretching eigenvector, λ1, and the pure compression eigenvector, λ3.
This is consistent with intuition, based on the fact that vorticity is strongly aligned with
λ2 and the expectation that fluid particle acceleration is mostly normal to vorticity
and consequently aligned with the pure stretching and compressing eigen-directions
of the rate-of-strain tensor (see figure 13).

The alignments, obtained from hot-wire measurements, are similar to those
observed in low-Reynolds-number experiments using three-dimensional particle
tracking velocimetry by Lüthi et al. (2005). Examples of such alignments are shown
in figure 9.

3.2.3. Additional significant alignments

As mentioned, there are various physically meaningful Eulerian components of
acceleration: a = al +ac = al +aL +aB = a� + a⊥, where ac = (u · ∇)u is the convective
acceleration and al = ∂u/∂t is the local acceleration in the frame attached to the
ground, aL = ω × u is the Lamb vector, aB = ∇u2/2 is the Bernoulli component of
acceleration, a� = (a · û)û is the acceleration component parallel to the velocity vector,
where û = u/u is the unit vector along the velocity vector, and a⊥ = a − a� is the
acceleration component normal to the velocity vector; similar quantities are defined
in the frame moving with the mean velocity. The availability of these quantities allows
us to address a rich variety of alignments.
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Figure 9. PDFs of the cosine of the angle between the acceleration components, a, al , ac ,
and the eigenframe, λk , of the rate of strain tensor, sij , obtained at Reλ ∼ 104 in our field

experiment (a, c, e) and at Reλ ∼ 102 in the PTV experiment (b, d, f ) by Lüthi et al. (2005).

First, here again, we point to the similarity between the alignments involving
quantities associated with the frame attached to the ground and quantities in the
frame moving with the mean velocity. We show those pairs of figures in which strong
alignments are observed.

Secondly, it is of special interest that the alignments shown above are similar
also to those observed in low-Reynolds-number experiments using three-dimensional
particle tracking velocimetry in experiments by Lüthi et al. (2005). Examples of such
alignments are shown in figures 14–20.
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Figure 10. Alignments of the acceleration components, aB , aL, a⊥, with the eigenframe, λk ,
of the rate-of-strain tensor, sij , associated with the frame attached to the ground.
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Figure 11. Same as in figure 10, associated with the frame moving with the mean velocity.
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Figure 12. Alignments of the acceleration component, a�, with the eigenframe, λk , of the
rate-of-strain tensor, sij , associated with (a) the frame attached to the ground and (b) the
frame moving with the mean velocity.

4. Two-point statistics
The auto-correlations of vectors a, ac , al , a′

c and a′
l (such as 〈axi

(x +r) · axi
(x)〉) and

their Cartesian components (such as 〈ax1
(x + r) · ax1

(x)〉) and the modulus of a are
shown in figures 21 and 22 along with mean values of the cosine of the angle between
corresponding vectors at two positions 〈cos{a(x + r), a(x)}〉, (figure 23). Here the
values of the distance, r , between the two points with sequential numbers i and i + n

is calculated as r = n	t 〈u1〉, where 	t =10−4 s is the sampling time.
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field experiment; (c) similar PDF from PTV experiment.
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Figure 15. Same as in figure 13 for cos(a, a⊥).
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The main features are similar to those obtained for Lagrangian correlations both in
DNS (Yeung 1997) and experimentally (Mordant et al. 2004a). The first is that all the
vectors and their components are correlated over much shorter distances – typically
10 Kolmogorov lengths – than their moduli. The latter are correlated over large
distances of the order of 104 Kolmogorov lengths, which is comparable with the
integral scale as for Lagrangian correlations both in DNS (Yeung 1997) and
experiments (Mordant et al. 2004a). This behaviour is observed also in PTV
experiments by Lüthi et al. (2005) (figure 22c).
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i on uj , where i, j = 1, 2, 3 (c). The fits are as implied by
simple arguments of Aringazin & Mazhitov (2004) and used later by Crawford et al. (2005).
Note that in Crawford et al. (2005) e ∼ 2 and d ∼ 10−2 and is Reynolds dependent.

A similar feature is found for the cosines of the corresponding angles (figure 23),
though the difference is much smaller. The above feature is the same both for
acceleration components in the frame attached to the ground and in the frame
moving with the mean velocity (figure 22a, b).

The behaviour of second-order structure functions of Cartesian components of a,
ac , al , a′

c and a′
l is consistent with the results on correlations shown above.

5. Conditional statistics, non-locality
Fluid particle accelerations are considered as small-scale quantities. The long-range

correlations of the moduli of accelerations reported above and those by previous
authors can be considered as a kind of manifestation of non-locality. This issue is
addressed in the present section.

We have seen in Part 1 (Gulitski et al. 2007a), that the statistics of derivatives
(i.e. small-scale quantities) is not independent of large-scale quantities, as is usually
assumed in a variety of theoretical approaches. Similar results were obtained by
Sawford et al. (2003); Mordant et al. (2004a); Crawford et al. (2005) for Lagrangian
statistics of accelerations. Our results exhibit the same feature. Namely, the conditional
statistics of accelerations are strongly dependent on velocity (figure 24). This can be
considered as an additional clear indication of direct coupling between large and
small scales and non-locality of turbulent flows. This means that it would be too
optimistic to expect quantitative universality of the acceleration statistics, e.g. such
as those shown in figure 24(a, b) among others. Hence the fits shown in these figures
(implied by simple arguments of Aringazin & Mazhitov (2004) and used later by
Crawford et al. (2005)) cannot be considered much more than just fits. Nevertheless,
they reflect the qualitative trends correctly and are the same in Crawford et al. (2005)
and in figure 24(a, b). However, they are very different quantitatively, as should
be expected, since the large-scale properties (and Reynolds numbers) of the flow
studied by Crawford et al. (2005) (French washing machine) are qualitatively and
essentially different from those in the atmospheric surface layer addressed in this
study. Therefore, it does not make much sense (if at all) to look for quantitative
comparison between the two.

Our observations are made in Euler frames; nevertheless, we observed the same
tendency of acceleration moduli to be correlated over large distances of the order
of 104 Kolmogorov lengths, which is comparable with the integral scale, just as for
Lagrangian correlations.
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6. Conclusions and possible future directions
The main technical achievement is the possibility of employing the multi-hot-wire

technique without invoking the Taylor hypothesis and thereby accessing the fluid
particle acceleration and a variety of its Eulerian components. This required the
design and manufacturing of a special probe and introduction of modifications in the
existing system.

The new technique allowed us to obtain a number of previously inaccessible
results. Our results prove the feasibility of correct measurements of the streamwise
derivatives without invoking the Taylor hypothesis, thus allowing us to address many
important issues associated with accelerations and related matters. These concern
a number of properties of fluid particle accelerations and its Eulerian components
such as variances, geometrical statistics of accelerations, random Taylor (sweeping
decorrelation) hypothesis, conditional statistics and non-locality. In particular, it was
shown that the random Taylor hypothesis is valid both in the system of coordinates
attached to the ground and in the system moving with the mean velocity. In the latter
case, the results can be regarded as qualitative only, owing to large relative error.
The strong cancellation effects between the local and convective accelerations do not
allow us to obtain reliably, for example, the variance of the Lagrangian acceleration.
It will be a challenge to improve the quality of measurements and requires non-trivial
investment.

The results conform with and confirm one of the main conclusions of
Kholmyansky & Tsinober (2000) and Kholmyansky et al. (2001a ,b) that the basic
physics of turbulent flow at high Reynolds number Reλ ∼ 104, at least qualitatively,
is the same as at moderate Reynolds numbers, Reλ ∼ 102. This appears to be true
not only for such basic processes as enstrophy and strain production, geometrical
statistics, the role of concentrated vorticity and strain, reduction of nonlinearity and
non-locality, but also with respect to a variety of issues concerning accelerations and
their Eulerian components.

It is important to emphasize, that our claim that “the basic physics of turbulent
flow at high Reynolds number Reλ ∼ 104, at least qualitatively, is the same as
at moderate Reynolds numbers, Reλ ∼ 102” does not mean that what is called
‘Reynolds-number dependence’ is unimportant. An immediate example comes from
the indirect evaluation of the acceleration variance. It gives clear indications that – if
scaled as proposed by Yaglom (1949) – it exhibits a definite Re-dependence and does
not saturate at least up to Reλ ∼ 104. Another well-known example is the behaviour
of flatness of individual velocity derivatives and similar quantities based on vorticity
and/or strain.

Reynolds dependence is of extreme importance in a great variety of purely
engineering problems and other applications. It is important in basic issues of
asymptotic behaviour and limiting state(s) of turbulent flows as Re → ∞. It remains
to classify and distinguish between Reynolds-dependent and Reynolds-independent
quantities/phenomena in turbulence. At this stage we hold the opinion, that at a
qualitative level the basic physics of turbulence is Reynolds-number independent.

One of the main technical challenges for the future is the reduction of the relative
error for the acceleration components in the system moving with the mean velocity.
This requires substantial improvement of the system such as (i) further miniaturization
of the probe design both with respect to its individual arrays and to the whole probe
in order to minimize the influence of velocity gradients across the individual arrays
and the whole probe, and (ii) further improvement of the calibration system. It is
possible to build a probe of the overall scale only slightly larger than 1 mm. It can
be done with the available technology on the basis of miniature arrays (figure 25).



100 G. Gulitski and others

Figure 25. An array (0.35 mm at the tip) built with a Pt-10% Rho wire, 1.25 µm in
diameter. A human hair (< 70 µm in diameter) is shown on the left-hand side.
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